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Gas 

In this paper we introduce a dynamically defined partition function for the 
Lorentz gas and investigate its connection with the classical ensembles and the 
phase-space probability measure derived from periodic orbit expansions. 
Numerical evidence is presented to support the equivalence of these measures 
and to link them to the thermodynamic quantities for the Lorentz gas. This also 
suggests a new dynamical basis for the assumption of equal a priori probabilities 
in the microcanonical ensemble. 
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1. I N T R O D U C T I O N  

The complete framework of classical statistical mechanics can be based on 
two postulates) 11 The first postulate is that of equal a priori probabilities 
for the distribution of ensemble members on the surface of constant energy, 
where each ensemble member is an isolated system with the same number 
of particles N, volume V, and energy E. This postulate implies that the 
microcanonicat ensemble has a distribution given by 

~( H--  E) dF ~( H--  E) dF 
d/zinc(F) - ~ ~( H--  E) d F -  S( E) (x) 

where S(E) is the area of energy surface H(F)=H(q ,  p ) =  E. This is the 
probability that the system will be found inside a phase-space volume 
element dF, centered around F =  (q, p). It is much more usual to find that 
a system is not .isolated, and the generic situation is to consider an equi- 
librium system in contact with a reservoir. If  that reservoir is very large in 
comparison with the system of interest, then the system and reservoir will 
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be in thermal equilibrium at the temperature of the reservoir (which is 
determined by its energy). An ensemble of such systems, each in contact 
with a reservoir at the same temperature, constitute the canonical ensemble.( ~ 
The form of the phase-space distribution function for a canonical ensemble 
of systems can be a second postulate 

e - H(F)/kT d F  

al to(r )  - I e - mr~/kr d r  (2) 

Equation (2) defines what we will refer to as the canonical measure, where 
k is Boltzmann's constant. The denominator is known as the canonical 
partition function, Zr  V, T).  The partition function normalizes the 
measure on the whole phase-space, thus making the canonical ensemble a 
probability measure, where d#c is the probability associated with the 
volume element dF. The logarithm of the partition function generates the 
thermodynamic properties of the system; in particular, the pressure is given 
by the following relation: 

p = k T ~ v l n  Z~(N,  V, T )  (3) 

In this paper we introduce a dynamical partition function for the Lorentz 
gas ~2) and propose a new dynamical basis for the microcanonical ensemble. 
The Lorentz gas considered in this paper has a point particle moving 
through a regular triangular array of stationary, hard-disk scatterers. 
The volume is changed by changing the interscatterer distance w, thus 
preserving the shape of the regular triangular lattice. 

2. THE D Y N A M I C A L  PARTIT ION FUNCTION 

In recent years a number of works have been devoted to the study of 
the properties of chaotic systems in terms of the unstable periodic orbits 
(UPOs). These studies show that the natural measure for certain hyper- 
bolic systems can be hierarchically approximated through measures 
supported on sets of progressively longer and longer unstable periodic 
orbits. (2-9) In this approach, the UPOs are grouped into prime sets accord- 
ing to length, and measures of larger and larger support are constructed by 
assigning weights to each UPO. The (weak) limit of these measures can be 
proved to be the natural measure for Axiom A flows. 13) The Lorentz gas 
has been studied using these methods, and although there is no proof of the 
validity of the UPO measures in this case, the accumulated evidence 
supports this approach/2' 4, 5) 

The ideas involved in the periodic orbit expansion for the Lorentz gas 
can be illustrated physically as follows. Consider a probability measure 



A Dynamical Partition Function for the Lorentz Gas 37 

with support on the set of periodic orbits with n collisions (n fixed), and 
call it p<"). Clearly, from a dynamical point of view, pc,) must assign the 
same weight to each point F =  (q, p) on a given UPO, and the chosen 
weight is proportional to the stability of the orbit. Indeed, regions close to 
less unstable orbits are visited by a generic chaotic trajectory more often 
than regions around more unstable periodic orbits, which results in a 
higher value of the natural measure in the regions around the less unstable 
orbits than around the more unstable ones. At the same time, for UPOs of 
equal stability, the larger their length, the easier it is to find them in phase- 
space. Thus, the weight assigned to UPOs is proportional to their length. 
As the stability of a UPO is measured by the inverse of its Lyapunov 
number, A;, then the value of the measure for an element of phase-space 
around the point F in the orbit i of length n is 

dp+~p,(F) = CAF 1 dli(F) (4) 

where P ,  is the set of UPOs of length n; C is a normalization constant inde- 
pendent of i; and dIi(F) is the mass contributed by the uniform (orbital) 
measure supported on the UPO i to a given phase-space element. <3) In 
other words, dli is a measure which gives zero weight to all the subsets of 
the phase-space which do not contain points on the UPO i, and it 
uniformly distributes the weight for all the points of i. Thus, dli(F) is the 
length of the UPO segment inside dq (centered at q), and the integral of 
dl~(F) over the whole phase-space is the spatial length of i. Given an 
arbitrary phase variable B, its average with respect to dp+ can be written as 

(B) +,=f,h,=ospar fro B<r)at/r> (5) 

Note that, since the speed of the wandering particle in the Lorentz gas is 
one, a trajectory can be parametrized either in terms of its length or period. 
Generally, it is the time variable that is adopted in the literature. Using this 
notation, the average of B over all UPOs of length n is 

where z~ is the period of orbit i. Here, F is a point on the phase-space 
trajectory of UpO, and it is considered as a function of the time which 
parametrizes the orbit. Correspondingly, the explicit expression of the 
measure with support on all the orbits of length n is 

A(-)-~(F) dr<,)(F) 
dp<")(F) = C ~. A71 dl+(F) = (7) 

ieP. ~'i~P. riA~-I 
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where A(")-~(F)=AT 1 if F s  i, and Ac")-*(F)= 0 otherwise; and dr ~'~ is the 
time needed by a particle on a UPO of length n to cross the space element 
dq around the space component of F. Note that, given a point on a UPO 
of length n, it is always possible to find a neighborhood of that point 
which does not contain any point from a different UPO of the same length. 
At all finite n, this allows us to construct nonoverlapping neighborhoods of 
the periodic orbits such that the fraction of phase-space they cover is 
arbitrarily small and positive, and to thereby assign a density to our orbital 
measures. Taking the limit n ~ oo of these measures means taking the limit 
in the appropriate weak topology. 

The theory of periodic orbit expansions states that the average of a 
phase variable according to the natural measure of the dynamics can be 
obtained by taking the n---, oo limit in Eq. (6). This procedure has been 
carried out for the pressurC 2) and the results obtained suggest that the 
UPO average is in excellent agreement with the time average. In Fig. 1 we 
compare our UPO average with the time average for different values of the 
spacing w. Invoking the ergodic theorem for this system, (]~ this implies 
that the UPO average agrees with the microcanonical ensemble average. 
This agreement holds for averages of other dynamical variables, such as the 
diffusion coefficient and the average Lyapunov exponentJ 2~ Henceforth, we 
assume that this agreement holds for all phase variables B. Thus, if the 
limit dl, ta(F)=dp ~ )  of the measures dp ~176 exists, we can take it as the 
phase-space distribution function for the system. This constitutes a first 
example of the connection between the thermodynamic formalism of 
Ruelle c]~) (which gives rise to the UPO expansion) and real thermo- 
dynamics. 
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Fig. 1. Potential pressure times volume versus interdisk spacing w. The dots, fitted wit~a a 
continuous curve, represent the results of direct simulations of around 10 6 collisions. The large 
squares represent the results obtained from the use of UPO measures, as computed for UPOs 
up to length 12. 
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We further argue that the normalization factor of the limiting UPO 
measure, which we term the dynamical partition function, is equivalent to 
the canonical partition function. That is, we define 

Zd(V)= lim Z(")(V)= lira ~ r /exp(--r j2;)  (8) 
n ~ o ~  n ~ o o  i E P n  

We observe that this partition function has the dimensions of time. This is 
analogous to the classical partition function for an N-particle system which 
has the units of action to the Nth power. Before we take the logarithm we 
must make Zd(V) dimensionless by dividing by a characteristic time to. 
The value of this characteristic time only affects thermodynamic functions 
by at most a constant, as the tr disappears in the difference between 
logarithms and when partial derivatives are taken. For the dynamical parti- 
tion function to have physical meaning it must generate the thermo- 
dynamic properties of the system. We now construct a numerical test of 
this conjecture. 

3. A NUMERICAL  TEST OF THE D Y N A M I C A L  PARTITION 
FUNCTION 

The system that we use to study our hypothesis is the Lorentz gas, as 
in Section 2. This system is composed of an infinite array of hard scatterers 
(arranged on the sites of a triangular lattice in two dimensions) with a 
single point particle wandering through the lattice. This wandering particle 
experiences simple hard-core collisions with the scatterers. To construct a 
thermodynamics for this system we must first establish the microscopic 
representations for the macroscopic variables, temperature and pressure, 
and we do this starting from the general setting of interacting N-particles 
systems. 

Consider the temperature of an equilibrium system of N particles in a 
d-dimensional space. Here the temperature is related to its kinetic energy 
by the equipartition theorem, which states that the average kinetic energy 
per degree of freedom equals kT/2. The total momentum of the system is 
usually constant in time (and vanishing), and the kinetic energy is also 
fixed. Therefore, the number of degrees of freedom of such a system reduces 
,o dN-d-1. Note that in the limit of large N, the quantity ( d +  1) is 
~,egligible, but fpr small N, such as the Lorentz gas, the correct counting 
.< the number of degrees of freedom is crucial. It follows that the total 
t t:~nslational kinetic energy is given by 

N 

K=i~, 2~ p~=(dN-d-1)k--- ~ (9) 
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where m is the mass of each particle, and Pi is the momentum of the ith 
particle. From linear response theory t~2) it can be shown that the pressure 
is given by 

dpV dN-d  ~ l p ~ _  ~ ru.F u (I0) 
d N - d - 1  m i =  1 i < j  

where r u is the vector joining particle i to particle j, and F o. is the force that 
particle i exerts on particle j. Combining Eqs. (9) and (10) gives 

PV=(N-1) kT-lj~<j ru" Fu=(N-1) kT + p*V (11 

Here, the pressure of the system has been decomposed into its kinetic 
contribution (N-1)kT/V and its potential (or interaction) contribution, 
which is given by p~. This reduces to the correct ideal-gas law with the 
usual N replaced by N - -  1. It is clear that for large N there is no difference, 
but for a small system where, for example, N = 2, the correction plays an 
important role. We can map the N =  2 system described above onto the 
Lorentz gas by moving the coordinate origin from the center of mass of the 
system to the center of particle 1 and scaling the mass to ensure that the 
kinetic energy is invariant. Choosing the mass M =  1 and constant speed 
p = l  (2) for the wandering particle in the Lorentz gas gives kT=2K= 
p2/M = 1. 

In this numerical test of the dynamical partition function versus a 
classical one, we consider seven different state points, all with the same 
values of N and T, but each with a different value of volume. To identify 
the correct classical ensemble, we need to consider the physical transforma- 
tion that takes one of these systems into another. Clearly, changing the 
volume implies doing work on the system, and some of this work will be 
transformed into heat. To maintain the temperature at a fixed value, the 
volume change must take place while the system is in contact with a heat 
bath. Although the dynamical mechanism of the heat bath is not explicit in 
our numerical scheme, it is implicit in the different systems that we choose 
to compare. Therefore the appropriate ensemble for us is the canonical 
ensemble, and we use Eq. (3) to calculate the change in the canonical parti- 
tion function as a function of volume (or spacing w). Integration Eq. (3) 
with respect to the volume at constant T and N = 2, we can calculate the 
change in the partition function for a given change in volume V, 

lnZ(V~)--lnZ(Vo)=fvv,'dV-~T=(N-1)ln(-~oo)+f~'dV~T (12) 
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Table I. Dynamical Partition Function 

41 

w Length Cycles V Zshank~ 

0.025 12 2602 3.5512 0.3157 
0.05 12 7792 3.6395 0.2936 
0.1 12 25918 3.8192 0.3504 
0.150 I1 25032 4.0000 0.4596 
0.2 10 25842 4.1916 0.5560 
0.236 10 51072 4.3301 0.6266 
0.300 10 165150 4.5813 0.7387 

From the accurate polynomial approximation for the potential contribution 
to the pressure obtained previously (2) we can easily compute the change in 
the logarithm of the partition function as a function of the volume. 

To test whether the dynamical partition function constructed in 
Eq. (8) generates the thermodynamic properties of the Lorentz gas, we 
numerically evaluate Za(V) at seven different volumes. This involves an 
extrapolation to infinite n based on a range of finite values of n. ~2) 
Our results are presented in Table I, where the column labeled Zshanks 
represents the values of Za for the highest n, after they have been processed 
with a Shanks transformation. The column labeled Cycles gives the number 
of cycles obtained at the largest length. The accuracy of these estimates of 
the partition function varies. At small spacings there are significant con- 
tributions to the periodic orbit expansions at larger lengths, whereas at 
higher spacings convergence is achieved at smaller lengths, but here there 
are sampling problems due to the much larger number of cycles. 

1.25 . , .  i . . . .  [ . . . .  i . . . .  i . . . .  i . . . .  i . , ,  
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Fig. 2. Changes in the partition function. The continuous curve represents the change of the 
canonical partition function obtained by integrating the pressure, using Eq. ( 11 ). The squares 
represent the change in the dynamical (periodic orbit expansion) partition function, using 
Eq. (8). 
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To compare with the standard thermodynamic method of Eq. (I 1), we 
present the change in the logarithm of the partition function as a function 
of spacing in Fig. 2. We choose w o = 0.025 as our reference point, defining 
A In Z(wo)=0.  The results obtained by integrating the p~ (referred to as 
canonical in Fig. 2) are highly accurate due to the accuracy of the polyno- 
mial approximation. The error bars have been computed using the Zsha,ks 
values of Table I and linear extrapolations in 1In. ~2~ 

4. CONCLUSIONS 

The proposed dynamical partition function gives results that oscillate 
about the canonical partition function (obtained by integrating the 
pressure). The canonical ensemble is needed when we move between state 
points at fixed temperature, which is achieved by contact with a heat bath. 
Figure 2 suggests, because of the consistency of the slopes of the canonical 
and dynamical partition function results, that the dynamical partition func- 
tion is a likely candidate as a generating function for the thermodynamics 
of the Lorentz gas. The numerical difficulties in both calculating and 
enumerating all UPOs of length 12 are formidable and probably near the 
limit of our present generation of workstations. It would require a 
considerable increase in both storage and wordlength to extend these 
calculations. 

The convergence of orbital measures to the natural measure for Axiom 
A flows ~3) is in the weak sense, i.e., the explicit form of the natural measure 
need not equal the pointwise limit of the orbital ones, although averages 
calculated here using the two measures are the same. Here we demonstrate 
that the UPO measure and the microcanonical ensemble give the same 
averages for the Lorentz gas. If this were true for an arbitrary phase variable, 
then we would be able to choose a phase variable which is equal to unity 
on phase element dF and zero elsewhere. The U P O  average of this variable 
would then equal the microcanonical probability of dF, and we would have 
a dynamical basis for the assumption of equal a priori probability. 

Measures can be defined in terms of the averages that they produce on 
a given function space (the set of observables); thus, measures which are 
equivalent on a restricted function space may turn out to be different if the 
set of observables is enlarged. For instance in ergodic theory one proves 
that the microcanonical ensemble is the natural measure for the Lorentz 
gas if the observables are continuous functions of phase. However, our 
measure which is also dynamically defined, can be shown to be different 
from the microcanonical one if we enlarge the set of observables to contain 
characteristic functions of (Lebesgue) measurable sets. Nonetheless, we 
claim that although different points must be given different weights, the 
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weight given to an element of  phase-space is equal to the that  given to any 
other  element (with the same volume).  The reason is that  every element of  
finite size in phase-space contains  infinitely many  points  of  different U P O s  
whose weights balance each other  so as to produce  a uniform distr ibution.  
Therefore, our  UPO-de r ived  measure  turns out  to be equivalent  to the 
microcanonical  ensemble for all choices of  "reasonable"  sets of  observables 
(e.g., cont inuous  functions of phase).  As the U P O s  are completely deter- 
mined by the dynamics ,  we argue that  every dis t r ibut ion other  than the 
microcanonica l  measure  would  not  have a dynamical  basis, even if they 
produce  the same the rmodynamic  averages. 
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